Germline stem cell number in the Drosophila ovary is regulated by redundant mechanisms that control Dpp signaling.

نویسندگان

  • M Olivia Casanueva
  • Edwin L Ferguson
چکیده

The available experimental data support the hypothesis that the cap cells (CpCs) at the anterior tip of the germarium form an environmental niche for germline stem cells (GSCs) of the Drosophila ovary. Each GSC undergoes an asymmetric self-renewal division that gives rise to both a GSC, which remains associated with the CpCs, and a more posterior located cystoblast (CB). The CB upregulates expression of the novel gene, bag of marbles (bam), which is necessary for germline differentiation. Decapentaplegic (Dpp), a BMP2/4 homologue, has been postulated to act as a highly localized niche signal that maintains a GSC fate solely by repressing bam transcription. Here, we further examine the role of Dpp in GSC maintenance. In contrast to the above model, we find that an enhancer trap inserted near the Dpp target gene, Daughters against Dpp (Dad), is expressed in additional somatic cells within the germarium, suggesting that Dpp protein may be distributed throughout the anterior germarium. However, Dad-lacZ expression within the germline is present only in GSCs and to a lower level in CBs, suggesting there are mechanisms that actively restrict Dpp signaling in germ cells. We demonstrate that one function of Bam is to block Dpp signaling downstream of Dpp receptor activation, thus establishing the existence of a negative feedback loop between the action of the two genes. Moreover, in females doubly mutant for bam and the ubiquitin protein ligase Smurf, the number of germ cells responsive to Dpp is greatly increased relative to the number observed in either single mutant. These data indicate that there are multiple, genetically redundant mechanisms that act within the germline to downregulate Dpp signaling in the Cb and its descendants, and raise the possibility that a Cb and its descendants must become refractory to Dpp signaling in order for germline differentiation to occur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

decapentaplegic Is Essential for the Maintenance and Division of Germline Stem Cells in the Drosophila Ovary

Stem cells are thought to occupy special local environments, or niches, established by neighboring cells that give them the capability for self-renewal. Each ovariole in the Drosophila ovary contains two germline stem cells surrounded by a group of differentiated somatic cells that express hedgehog and wingless. Here we show that the BMP2/4 homolog decapentaplegic (dpp) is specifically required...

متن کامل

Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis.

Stem cells are responsible for replacing damaged or dying cells in various adult tissues throughout a lifetime. They possess great potential for future regenerative medicine and gene therapy. However, the mechanisms governing stem cell regulation are poorly understood. Germline stem cells (GSCs) in the Drosophila testis have been shown to reside in niches, and thus these represent an excellent ...

متن کامل

Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary.

The existence of specialised regulatory microenvironments or niches that sustain stable stem cell populations is well documented in many tissues. However, the specific mechanisms by which niche support (or stromal) cells govern stem cell maintenance remain largely unknown. Here we demonstrate that removal of the Jak/Stat pathway in support cells of the Drosophila ovarian niche leads to germline...

متن کامل

Coordinated niche-associated signals promote germline homeostasis in the Drosophila ovary

Stem cell niches provide localized signaling molecules to promote stem cell fate and to suppress differentiation. The Drosophila melanogaster ovarian niche is established by several types of stromal cells, including terminal filament cells, cap cells, and escort cells (ECs). Here, we show that, in addition to its well-known function as a niche factor expressed in cap cells, the Drosophila trans...

متن کامل

Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary

In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 131 9  شماره 

صفحات  -

تاریخ انتشار 2004